Synopsis Report Groundwater Availability Assessment

Georgia Environmental Protection Division

Contents

Summary of Sustainable Yield Results in Prioritized AquifersS-1		
Section 1	Background	S-7
1.1	Purpose of Study	
1.2	Prioritized Aquifers in Georgia	
Section 2	Sustainable Yield Approach	S-8
2.1	Sustainable Yield Criteria	S-8
	2.1.1 Loss of Confined Head/Pressure (Drop of Water Levels Betwee Pumping Wells)	
	2.1.2 Changing an Aquifer from Confined to Unconfined Condition	ısS-9
	2.1.3 Minimize Impacts to Streamflow	S-9
2.2	Sustainability Measures by Modeling Approach	S-10
Section 3	Piedmont and Blue Ridge Provinces: Streamflow-Based Water	0.44
	Budgets	
3.1	Modeling Approach	
3.2	Estimated Range of Sustainable Yield	S-14
Section 4	Northwestern Georgia: Numerical Groundwater Flow Model	S-19
4.1	Modeling Approach	S-19
4.2	Estimated Range of Sustainable Yield	S-19
Section 5	Georgia Coastal Plain: Regional and Sub-Regional Calibrated Groundwater Flow Models	S 25
Г 1		
5.1	Dougherty Plain Modeling Approach	
5.2 5.3	Dougherty Plain Sustainable Yield Ranges	
5.4	Sustainable Yield of South-Central Georgia and Eastern Coastal Plain U	
5.4	Floridan Aquifer, Claiborne Aquifer, and Cretaceous Aquifer	1 1
	5.4.1 Upper Floridan Aquifer in South-Central Georgia	
	5.4.2 Upper Floridan Aquifer in South-Central and Eastern Coastal	
	Georgia	
	5.4.3 Claiborne Aquifer	
	5.4.4 Cretaceous Aquifer	
5.5	Regional Model Combined Prioritized Aquifer Sustainable Yield	
	Adjustment	S-45

Note: The Georgia Environmental Protection Division acknowledges the efforts of CDM in development of the analysis and models summarized here and in preparation of this document.

Tables

	Table S-2 Sustainable Yield Estimates Using Water Budget Models	S-5
	Table S-3 Groundwater Sustainability Measures for Study Basins in the Piedmont	
	and Blue Ridge	.S-16
	Table S-4 Comparison of Groundwater Sustainability Measures to Net Groundwa	
	Consumption Using Tennant Thresholds	
	Table S-5 Dougherty Plain Concurrent Groundwater Withdrawal Increase	
	Factors	.S-28
	Table S-6 Summary of Sustainable Yield Estimates for Withdrawals from Individu	
	Prioritized Aquifers in the Coastal Plain of Georgia	
	Table S-7 Summary of Sustainable Yield Estimates for Simultaneous Withdrawals	
	from All of the Prioritized Aquifers in the Coastal Plain of Georgia	
	Table S-8 Total Sustainable Yield of All Prioritized Coastal Plain Aquifers	
Figures		
	Figure S-1 Location of the High Prioritized Aquifers Selected for Study	S-2
	Figure S-2 Piedmont and Blue Ridge Model Areas	
	Figure S-3 Northwestern Georgia Model Area	
	Figure S-4 Total Simulated Baseflow Within Model Domain For No Pumping and	
	70 MGD Pumping Scenarios	
	Figure S-5 Total Simulated Baseflow Within Model Domain For No Pumping and	
	27 MGD Pumping Scenarios	
	Figure S-6 Hydrologic Unit Code Regions	
	Figure S-7 Cumulative Violations MODFE Model	
	Figure S-8 Regional and Sub-Regional Mode Domains	
	Figure S-9 Groundwater Modeling for Upper Floridan Aquifer Sustainable Yield	
	Assessment in South Central Georgia	.S-35
	Figure S-10a Simulated Groundwater Level Drawdown in Upper Floridan Aquife	
	Due to Increasing Existing Well Pumping in Upper Floridan Aquifer in South	
	Central Georgia (ΔQ =293 mgd)	.S-37
	Figure S-10b Simulated Groundwater Level Drawdown in Upper Floridan Aquife	
	Due to Increasing Existing Well Pumping in Upper Floridan Aquifer in South	
	Central Georgia (ΔQ=507 mgd)	
	Figure S-11 Groundwater Modeling for Upper Floridan Aquifer Sustainable Yield	
	Assessment in South Central Georgia and Eastern Coastal Plain	
	Figure S-12a Simulated Groundwater Level Drawdown in Upper Floridan Aquife	
	Due to Increasing Existing Well Pumping in UF Aquifer in South Central Georgia	
	and Eastern Coastal Plain (ΔQ=507 mgd)	

Figure S-12b Simulated Groundwater Level Drawdown in Upper Floridan Aquifer Due to Increasing Existing Well Pumping in UF Aquifer in South Central Georgia
and Eastern Coastal Plain (ΔQ =393 mgd)
Figure S-13 Groundwater Modeling for Claiborne Aquifer Sustainable Yield
Assessment
Figure S-14a Simulated Groundwater Level Drawdown in Claiborne Aquifer
Due to Increasing Existing Well Pumping in Claiborne Aquifer (ΔQ=33 mgd)S-43
Figure S-14b Simulated Groundwater Level Drawdown in Claiborne Aquifer
Due to Increasing Existing Well Pumping in Claiborne Aquifer (ΔQ=183 mgd)S-44
Figure S-15 Groundwater Modeling for Cretaceous Aquifer Sustainable Yield
Assessment
Figure S-16a Simulated Groundwater Level Drawdown in Providence Aquifer
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville Aquifer
$(\Delta Q=74 \text{ mgd})$
Figure S-16b Simulated Groundwater Level Drawdown in Providence Aquifer
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville
Aquifer (ΔQ =78 mgd)
Figure S-17a Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville
Aquifer (ΔQ =74 mgd)
Figure S-17b Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer
Due to Increasing Existing Well Pumping in Providence and Eutaw Midville
Aquifer ($\Delta Q=78 \text{ mgd}$)
Figure S-18 Groundwater Modeling for Sustainable Yield Assessment of Upper
Floridan in South Central Georgia and Eastern Coastal Plain, Claiborne Aquifer, and
Cretaceous Aquifer
Figure 19a Simulated Groundwater Level Drawdown in Upper Floridan Aquifer
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=400 mgd)S-53
Figure 19b Simulated Groundwater Level Drawdown in Upper Floridan Aquifer
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=400 mgd)S-54
Figure 19c Simulated Groundwater Level Drawdown in Clayton/Dublin Aquifer
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=400 mgd)S-55
Figure 19d Simulated Groundwater Level Drawdown in Providence Aquifer Due to
Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ =400 mgd)S-56
Figure 19e Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=400 mgd)S-57
Figure 20a Simulated Groundwater Level Drawdown in Upper Floridan Aquifer
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=563 mgd)S-58
Figure 20b Simulated Groundwater Level Drawdown in Claiborne/Gordon Aquifer Due to Increasing Existing Well Pumping in Prioritized Aquifers (AQ=563 mgd). \$50
Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=563 mgd)S-59
Figure 20c Simulated Groundwater Level Drawdown in Clayton/Dublin Aquifer Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ=563 mgd) S-60
THE TO INCREASING EXISTING WELL PHINDING IN PRIORITIZED ACHITERS (ALJENAS MOCL) S-60.

Table of Contents Review Draft Synopsis of Groundwater Availability Assessment

Figure 20d Simulated Groundwater Level Drawdown in Upper Providence Aquifer Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ =563 mgd)...S-61 Figure 20e Simulated Groundwater Level Drawdown in Eutaw Midville Aquifer Due to Increasing Existing Well Pumping in Prioritized Aquifers (ΔQ =563 mgd)...S-62